Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(21): 12328-12343, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453997

RESUMO

G-quadruplexes (G4s) are four-stranded nucleic acid structures formed by the stacking of G-tetrads. Here we investigated their formation and function during HIV-1 infection. Using bioinformatics and biophysics analyses we first searched for evolutionary conserved G4-forming sequences in HIV-1 genome. We identified 10 G4s with conservation rates higher than those of HIV-1 regulatory sequences such as RRE and TAR. We then used porphyrin-based G4-binders to probe the formation of the G4s during infection of human cells by native HIV-1. The G4-binders efficiently inhibited HIV-1 infectivity, which is attributed to the formation of G4 structures during HIV-1 replication. Using a qRT-PCR approach, we showed that the formation of viral G4s occurs during the first 2 h post-infection and their stabilization by the G4-binders prevents initiation of reverse transcription. We also used a G4-RNA pull-down approach, based on a G4-specific biotinylated probe, to allow the direct detection and identification of viral G4-RNA in infected cells. Most of the detected G4-RNAs contain crucial regulatory elements such as the PPT and cPPT sequences as well as the U3 region. Hence, these G4s would function in the early stages of infection when the viral RNA genome is being processed for the reverse transcription step.


Assuntos
Quadruplex G , HIV-1 , Humanos , RNA/química , HIV-1/genética , Sequências Reguladoras de Ácido Nucleico , Sequência Conservada
2.
Microbiol Res ; 244: 126664, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33359841

RESUMO

Desert-like areas located in the eastern portion of the state of Utah (USA) have geographic features that can resemble the surface of the planet Mars, characterized by red-colored hills, soils and sandstones. We examined the bacterial biodiversity of surface soil samples from several sites from the Colorado Plateau Desert in eastern Utah using pyrosequencing of PCR amplified bacterial 16S rRNA genes from total extracted soil DNA. The sample sites cover the Great Basin, Goblin Valley State Park and nearby regions on the Colorado Plateau. We also examined several physicochemical parameters of the soil samples to investigate any possible correlations between bacterial community structure and environmental drivers. The predominant bacterial phyla present in the samples were found to belong to members of the Proteobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The most abundant genera in our samples were found to belong to the Cesiribacter, Lysobacter, Adhaeribacter, Microvirga and Pontibacter genera. We found that the relative abundance of Proteobacteria and Gemmatimonadetes were significantly correlated with soil pH and a low concentration of organic matter, suggesting that, in these relatively high-altitude desert soils, these two parameters may be of primary importance to influence bacterial community composition.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Colorado , DNA Bacteriano/genética , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Utah
3.
Sci Rep ; 9(1): 7954, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123285

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 8(1): 8120, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802381

RESUMO

DNA and RNA guanine-rich oligonucleotides can form non-canonical structures called G-quadruplexes or "G4" that are based on the stacking of G-quartets. The role of DNA and RNA G4 is documented in eukaryotic cells and in pathogens such as viruses. Yet, G4 have been identified only in a few RNA viruses, including the Flaviviridae family. In this study, we analysed the last 157 nucleotides at the 3'end of the HCV (-) strand. This sequence is known to be the minimal sequence required for an efficient RNA replication. Using bioinformatics and biophysics, we identified a highly conserved G4-prone sequence located in the stem-loop IIy' of the negative strand. We also showed that the formation of this G-quadruplex inhibits the in vitro RNA synthesis by the RdRp. Furthermore, Phen-DC3, a specific G-quadruplex binder, is able to inhibit HCV viral replication in cells in conditions where no cytotoxicity was measured. Considering that this domain of the negative RNA strand is well conserved among HCV genotypes, G4 ligands could be of interest for new antiviral therapies.


Assuntos
Quadruplex G , Hepacivirus/genética , RNA Viral/biossíntese , RNA Viral/química , Sequência de Bases , Linhagem Celular , Sequência Conservada , Hepacivirus/fisiologia , Humanos , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral
5.
J Gen Virol ; 98(4): 633-642, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28141507

RESUMO

Several RNA interactions are thought to play a role in the regulation of the hepatitis C virus (HCV) life cycle. Most of these interactions involve the 5BSL3.2 domain and therefore occur at the 3' end of the viral genomic RNA. A long-range interaction has also been described between 5BSL3.2 and the 5' untranslated region (UTR). Another interaction involves the SLVI stem loop of the core coding region and the 5'UTR. We aimed to analyse the role of this SLVI domain, which likely interferes with others interactions. By evaluating RNA stability, translation and RNA synthesis, we showed that the SLVI stem loop extensively modulates the effect of the interactions mediated by the 5BSL3.2 domain and strongly affects the IIId/5BSL3.2 interaction. Numerous interactions in HCV genomic RNA have been described in the UTRs and the coding sequence but their roles are poorly understood. We showed that the SLVI domain located in the core coding sequence plays an important role in the translation of the polyprotein, but also in the modulation of long-range RNA interactions centred on the 5BSL3.2 domain. The SLVI domain has been absent from most studies, especially from the extensively used subgenomic replicon; our data highlight the importance of this domain in the studies of these long-range interactions in the HCV life cycle.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/genética , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Proteínas do Core Viral/genética , Pareamento de Bases , Biossíntese de Proteínas , Estabilidade de RNA , RNA Viral/biossíntese , Transcrição Gênica
6.
Cell Mol Life Sci ; 72(17): 3375-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25822205

RESUMO

Stem-loop SL2 is a self-interacting palindromic sequence that has been identified within the hepatitis C virus genome (HCV). While, RNA dimerization of the HCV genome has been observed in vitro with short RNA sequences, the role of a putative RNA dimerization during viral replication has not been elucidated. To determine the effect of genomic dimerization on viral replication, we introduced mutations into SL2 predicted to disrupt genomic dimerization. Using surface plasmon resonance, we show that mutations within the SL2 bulge impact dimerization in vitro. Transfection of Huh7 cells with luciferase-encoding full-length genomes containing SL2 mutations abolishes viral replication. Luciferase expression indicates that viral translation is not or slightly affected and that the viral RNA is properly encapsidated. However, RT-qPCR analysis demonstrates that viral RNA synthesis is drastically decreased. In vitro synthesis experiments using the viral recombinant polymerase show that modifications of intra-molecular interactions have no effect on RNA synthesis, while impairing inter-molecular interactions decreases polymerase activity. This confirms that dimeric templates are preferentially replicated by the viral polymerase. Altogether, these results indicate that the dimerization of the HCV genomic RNA is a crucial step for the viral life cycle especially for RNA replication. RNA dimerization could explain the existence of HCV recombinants in cell culture and patients reported recently in other studies.


Assuntos
Genoma Viral/genética , Hepacivirus/genética , Sequências Repetidas Invertidas/genética , Mutação/genética , Replicação Viral/genética , Pareamento de Bases , Linhagem Celular , Primers do DNA/genética , Dimerização , Vetores Genéticos/genética , Humanos , Luciferases , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...